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Executive Summary

Large databases maintained by the Navy are a potential source of useful knowledge. Yet
this knowledge is only implicit in the data. It must be mined and expressed in a concise,
useful form of statistical patterns, equations, rules, concepts, and the like. Automation of
knowledge mining is important because databames are very large, numerous, and rapidly
growing.

In the previous project (ONR N00014-90-J-1603; March 1, 1990 - March 31, 1991) we
have developed Forty-Niner (49er), a general-purpose database mining system, which con-
ducts large-scale search for useful knowledge. In the current project (Jan.25, 1991 - Jan.24,
1992) we (1) expanded 49er into a menu-driven tool which can be used by a non-programmer,
(2) tested 49er on large scale, including search in two NPRDC databases, and (3) augmented
49er's search for knowledge in several ways.

The main results of 49er's search are regularities. All have a simple general form:

in a (sub)range S of data a pattern P holds,

for instance "for all data, salary of each person is a logarithm of the length of service (within
a specified error)", or "for submarine recruiters who work in metropolitan areas, their time
of stay at the present station correlates negatively with their success rate".

The ranges are described by conjunctions of simple conditions, for instance "submarine
recruiters", or "recruiters who work in metropolitan areas". The patterns belong to two
types: (1) equations, such as linear or logarithmic dependency; (2) contingency tables. Both
equations and contingency tables are very useful and widely used tools in data analysis.
For instance, Statistical Concepts and Methods by Bhattacharyya and Johnson (1986), has a
good introduction to both equations and contingency tables. Gokhale and Kullback discuss
contingency tables extensively in their monograph (1978). Both equations and contingency
tables are concise data summaries. Both can be used for making predictions and explana-
tions. For more details see section 2, where we define regularities, and section 5.

All statistical tools used by 49er are elementary. This is done on purpose, so that it
should be easy to interpret each result. 49er's strength lies not in single statistical tools,
but in using them in a large scale automated search, which can examine many thousands of
hypotheses. Scope of search is very large even for small databases. Consider a database of
just 10 attributes, Consider subsets of data which can be described by conjunctions of up to
three conditions. For instance, we may be interested in patterns which hold for people who
live in big cities, who are older than 20, and who smoke. If all conditions are binary, and if
we consider only one type of 2-dimensional pattern, there is some 25,000 hypotheses possible.
A typical database uses nw-ny tens of attributes, and we may be interested in many types of
patterns, so the number of reasonable hypotheses can easily reach ro billions. 4

A well-organized, large scale search, guided by user goals, know-l .1i -t attributes,
and partial results of data analysis, is necessary to make regularity '-ct6iv,-, Let us
contrast 49er with statistical packages, such as SPSS (SPSS R~feien 0) and Lisp-
Stat (Tierney, 1990; Lisp-Stat: Book Reviews, 1991), widely used in ,. The most
important advantage of 49er over any statistical package is that a packa narily , tool
box, whereas 49er is primarily an integrated production linei 49e, auto. . y rc.,rates



and examines large numbers of hypotheses, whereas tools available in a statistical package
verify one user-generated hypothesis at a time. It is up to the package user to decide each
time which attributes to try, which hypothesis, which method, and what to do next after
each result is obtained.

49er could be also viewed as a toolbox since all lower-level routines for analysis, eval-
uation, and graphical presentation of hypotheses can be directly called by the user. But
49er can apply each tool thousands times in running one discovery search. It is true that
all what 49er does can be evenhtally available in a package such as Lisp-.Stat. Indeed, in
addition to the box of statistical tools, Lisp-Stat is a programming environment based on
lisp. So 49er, which is programmed in lisp, could be developed in Lisp-Stat. However, the
implementation would take years for somebody inexperienced with search methods applied
in discovery systems. Discovery search is difficult to program because it examinee large hy-
pothesis spaces, and must do it without repetitions, without skipping important hypotheses,
must examine more general hypotheses before it examines their particular cases, should not
try costly patterns when a simple test can tell that they do not hold, and so forth. When
these requirements are satisfied the search becomes efficient, without spending weeks of Cpu
time on tasks which can be done in hours. Also, a well designed discovery system allows
the user to spend minutes or hours on setting the system switches rather than reprogram-
ming, which would take weeks, or even months. 49er has been developed to satisfy these
requirements.

49er searches for significant statistical patterns and equations using knowledge about
database and user goals (details in section 6), conducting a more costly search for equations
only when data indicate a functional relationship between variables (details in section 5).
49er combines several searches, each contributing to different aspect of a regularity (details
in section 4). Correspondence between the search components and the components of knowl-
edge makes the systein easy to understand, use, and expand. Regularities can be further
,'nfined by 49er, typically yielding much stronger regularities and useful concepts (details in

sec• on 7).
We discuss 49er's performance in four categories of tests. First, we applied 49er to large

databases. Search in a megabyte-size database typically yields many regularities, but it
would take human exptrts weeks to verify the optimality of 49er's results. The second type
of testing aims at reproduction of human findings. Databases which have been extensively
studied are rare, however. To evaluate 49er on large scale against known results, we use hide-
and-seek testing on artificially created data. In the fourth approach we analyze discovery of
regularities in randomly generated databases. The results are summarized in section 8.

We have applied 49er systematically on two NPRDC databases. In sections 9 and 10 we
discuss a variety of results obtain d from those databases.

Ace----For-
NTIS CRAMI Statement A per telecon
DTIC 'i'AB L] Dr.Susan Chipman ONR/Code 1142
U!,a';no, rcd L I' Arlington, VA 22217--5000
juslific'Itio'i. ..... ........

NWW 6/29/92
" .B y ............. ..................................

DiOtributloii I

A v oilatfi1Y Cor'ct•

DIM



Contents

I Introduction

2 Overview of 49er.b .

3 What Is a Regularity? 4

4 Multisearch In 49*r S
4.1 Operations on Attributes . ............................. 8
4.2 Partition-Data Search ................ ... , . , ... . . 11
4.3 Select-Attributes Search .... . ................. ......... 12
4.4 Find-Regularity Search ................. .. . ...... 12

5 Types of Regul'iaties 14
5.1 CONTINGENCY-all Regularities . .. . . . . .. .. .. . . .. .. . . ... . 14
5.2 CONTINGENCY-2 Regularities............. ............ 1.7
5,3 Equations . . . . . . . ............... .. ...... .. ... . 18

6 Use of Domain Knowledge .1

6.1 Dependence Between Attribute Type and Slicing Method ... ...... . .. 20
6.2 Dependence Between Attribute Type and Regularity Type ...... . 21

? Regularity and Concept Refinement 21
7.1 Refinement of Range . . ............. 9 22
7.2 Adding New Dimensions to Patterns . . ............. . . . .. 22
7.3 Refinement of CONTINGENCY-2 Regularities and Concepts ..... 23
7.4 Refinement of Equations. . ..... ...... .. s , . # .. * 9 . .. * 24
7.5 Automated Use of Refinement ................... 9 . .9.9.99 25

8 Tests on Real and Artificial Data 25
8.1 Application to rea databases ...... ........ ........... 25
8.2 Comparison with human findings .. 9.9..99 ...... ....... . 26
8,3 What ca be Discovered in Purely Random Data? ..... . ......... 27
8,4 Hide-and-seek Testin ............................... 29

9 Application of 49er to Navy Training Database s0
9.1 Strategy of search . . . .. .. ... . .. ......... . .. 31
9.2 Summary of results; STEP I . ...... . . . . .. .. .. .. . ....... 32

9.3 Summary of results; STEPII .................... . . . 33
9A4 Summary of reiults; STEP III . ... . . . . .. .. .. .. . ....... 34

9. Examples of results ................................. 3

10 Application of 49er to Navy Recruitment Database 38
10.2 Summary of results for SATISFY ..... ........................ 3810.2 Surmtery of rsultch fo. AIF................................ 38

iii



10.3 Summary of results for SUCCESS ........................ 39

11 Conclusions 42

12 Acknowledgments and Disclaimer 42

13 Publications sponsored by this grant 42

14 References 43

IV



1 Introduction

We describe Forty-Niner (49er), a computer system for automated mining useful knowledge
in relational datcbases, we evaluate 49er on a number of tests, and we describe results of
49er's applications on two NPRDC databases. The basic form of knowledge discovered by
49er is regularities, that is patterns common in sets of data, analogous to scientific laws.
In addition, 49er introduces simple concepts. We describe the genetal form of regularities
and we analyze a variety of their types. Regularities discovered in databases can play a
role analogous to scientific laws, allowing the users to make predictions, explanations, and
justified decisions.

There has been considerable interest in recent years in automated methods of mining
databases for useful knowledge. Two collections of papers (Piatetsky-Shapiro & Frawley
1991; Piatetsky-Shapiro 1991) provide the overview of the state of art in Knowledge Discovery
in Databases (KDD). Database mining is attractive for many reasons. There are many
available databases, they are simple and uniform in structure, and a considerable amount of
effort has been spent in designing them and collecting useful data. Many historical records are
available in the form of databases, such as stock market prices and indexes, corporate records,
census data, and weather records. The automated search for regularities is particularly
attractive and useful for large databases, and the same algorithms apply to all relational
databases, because of their similarity in structure. Because many databases are very large,
and the forthcoming databases will encompass gigabytes or even terabytes of information,
knowledge extraction on that scale must be automated,

Database management systems help to efficiently retrieve facts in response to specific
queries. However, it is difficult to use the traditional database management tools on discovery
tasks, because discovery requires open exploration of a large-scale hypothesis space, instead
of data retrieval based on a single, user-defined pattern. Even the best statistical packages
(Tierney 1990) require a human to prepare a data set and to generate hypotheses, and take
one hypothesis at a time. Large databases make both approaches prohibitively slow,

Typical databases vary from thousands to many millions of records, from a few to a few
hundred attributes, and from two to huge numbers of attribute values. The attribute values
can be boolean, symbols or numbers. To accommodate different types of data the hypothesis
space must be very large and complex. Different domain knowledge and different accuracy
requirements add to the complexity of the task.

A database miner must be open to many types of regularities. It must consider a huge
number of data subsets. It must be systematic, yet not repetitive. It must use knowledge,
be responsive to user goals, and be able to bootstrap on the earlier results. It must be able
to present the results to hitmans in a simple convincing way. 49er has been constructed with
all these tasks in mind.

Rather than building separate discovery systems to deal with the variety of databases
and various exploration goals, we developed a general-purpose database mining system, a
uniform representation of doiriain knowledge, and search control which is relatively easy to
understand and manipulate. We introduced a theoretical framework which can be used to
describe and to analyze the search for regularities in relational databases.

Our knowledge discovery paradigm can be summarized in a few statements:
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1. Decompose discovery into several search tasks, each search governed by its own opera-
tors, heuristics, and evaluation criteria. Each search must be related to a well-defined
aspect of a regularity.

2. For each search, develop an automated applicability test.

3. Distinguish between discovery of preliminary regularities, and the regularity refinement
process.

4. Develop a large scale search that captures regularities in a preliminary, simple form, at
a predefined level of strength. Such regularities can be discovered fast, so that a large
scale search is possible.

5. Develop various mechanisms for regularity refinement. Preliminary regularities are typ-
ically manifestations of stronger regularities, which may be obtained through gradual
refinements.

6. Apply regularity refinement techniques selectively because they are computationally
expensive.

7. Link all searches into a multisearch system, which can examine large hypothesis spaces
and can be run either automatically, or can be interrupted to permit human inspection
and guidance.

8. Develop an efficient inspection mechanism, which allows the user to review the results
and decide on the next step.

9. Provide the user with access to search panraeters that :an be adjustld to the available
resources, such as the duration of search or available memory.

10. Provide the user with tools to represent simple domain knowledge and discovery goals.

11. Link domain knowledge and discovery goals to the mearch control.

A database search for regularitict has been automated to various degree. Only a few
database exploration systems, including 49er, TETRAD (Glymour et al. 1987, 1991), and
Knowledge Discovery Workbench (KDW Piatetsky-3hapiro & Ma.itheus 1991), conduct a
systematic, large scale search.

KDW (Piatetsky-Shapiro & Matheus 1991) conducts a large scale exploration, using
several tools: it checks functional dependence of two variables, clusters two dimensional
data into a number of linear dependencies, finds application conditions for each cluster,
links these conditions into a decision tree, discovers anomalous records, which do not fit the
known regularities, and provides the user with a number of data and regularity visualization
methods. In comparison to KDW, the scope of 49er's search is larger, both in terms of the
subsets of data explored and patterns considered.

TETRAD (Glymour et al. 1987, 1991) searches for a network of causal relations between
attributes. In distinction, in 49er we assume that database users know which attributes
they can control, and they know their goal attributes, which they would like to influenice by
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manipulations on controls. The combinations of goal and control attributes determine the
scope of search for useful regularities.

In a limited form of automation, the user is charged with hypotheses generation, while
verification is conducted automatically (Naqvi and Tsur 1989). This approach, called data
dredging (Chimenti et al. 1990) does not go beyond the traditional database management
mode of nsawering user-generated queries. In contrast, Cai, Cercone and Han (1989) propose
an inductive, partially automated process of generation and generalization of hypotheses.
Their search is guided by concept hierarchies, one for each database attribute, and the user-
specified relevance relation. The progress is evaluated based on the user-specified thresholds.

Scientific Discovery (Shrager & Langley 1990) is another main direction in Machine Dis-
covery. The systems such as BACON (Langley et al. 1987) and FAHRENHEIT (Zytkow,
1987), use control over experiments and focus on laws derived from fine scientific data. Sci-
entific Discovery is a useful source of solutions for KDD, but most methods must be adapted
to KDD. This is because large errors, sparse data, and records with missing values are com-
mon in databases, aud new data are not as readily available as in experimental sciences.
Many databases describe social phenomena, not conducive to the representations useful in
natural sciences. Forty-Niver applies a number of solutions from BACON and FAHREN-
HEIT (tytkow & Baker 1991), but does not use the experimental approach and puts more
emphasis on statistical patterns. In accord with scientific approach to data, we neglect miss-
ing values. What if frequently called "inconsistent values', in our approach is included in
statistical patterns or becomes error associated with equations.

2 Overview of 49er.b

Forty-Niner.b (49er.b), described in this paper and developed in the reported period, en-
hances Forty-Niner (Zytkow & Baker 1991) in several ways. It can use domain knowledge
to guide the search for regularities. It inicorporates Equation Finder (Zembowicz & Zytkow
1991), so it is able to discover a broad range of equations. A functionality test allows 49er.b
a selective use of Equation Finder on data which permits functional description. Other ad-
ditions include the systematic use of chi-square te'st to evaluate and to rank regularities, and
new mechanisms for regularity refinement.

The architecture of 49er.b is summarized in Figure 1. The system consists of two search
modules. The first performs a search for two-dimensional regularities in a large hypothesis
space determined by subsets of data and useful combinations of attributes. In this phase
Forty.Niner covers as much data as possible with regularities. The second module refines
regularities, strengthening them and/or generalizing them from two to more dimensions..
Either module can be used many times, as indicated by thick arrows in Figure 1. At each
cycle, the user can change search parameters and the scope of search, and continue the explo-
ration, This architecture combines the advantages of large-scale automation and knowledge
brought by a human operator. Effective visualization enables the human operator to quickly
capture the specificity, promise, and importance of a given statistical pattern, and guide or
supervise a more costly search for its refinement and generalization. Initially, Forty-Niner
looks for simple statistical regularities, but realizing that the data follow specific patterns,
the user might apply more subtle (but more costly) mechanisms, focused on the particu.larly
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interesting regularities.
The evaluation of regularities requires statistical tests and the selection of a threshold of

acceptance for each test. Threshold selection can be either an arbitrary choice or a decision
motivated by the domain knowledge and user goals. Depending on the discovered regularities,
the thresholds can be adjusted to increase or decrease the number of new discoveries.

3 What Is a Regularity?

We concentrate on knowledge in the form of (1) regularities and (2) concepts in which those
regularities are expressed. A regularity holds in a domain D if some events or combinations of
events which are a priori possible, never occur in D, while some others can occur repeatedly.
A regularity occurs whena there is a pattern in states, events, processes, or the like, and not
each possible event belongs to that pattern, or at least not everything is equally possible,
This is probably the most general characteristics of a regularity.

The most useful special cases of regularities take on the form of equations, first order
logic statements, and contingency tables. In some domains no event is excluded but some
can be highly improbable. This can be expressed by statistical regularities in the form
of contingency tables. In other domains the regularities are very strong and most of the
events are excluded. These regularities can be expressed in the form of logic statements or
mathematical equations. Equations are suitable for highly repeatable, scientific facts about
numerical attributes. Equations are also useful in expressing quasi-functional relations.hips
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when the actual values are spread within a limited variance; for instance the dependence
between human weight and height, or the cost of a house on its size.

In database applications, the space of all possible events can be defined by the attributes
that form a given database and their values. Given a relational database DB with the
attributes A1, A2, ... , A,, let V1, V2, ... , V,. be the corresponding sets of values for each
attribute. The space W of all possible events is the Cartesian product W = V1 x V2 x ... x Vn,
which includes all possible combinations of values of the attributes, that is all possible events.
Let Z be the language based on these attributes and their values.

We say that a regularity R in a domain (a population) represented by a database DB
holds in DB if some logically possible events never actually occur in the domain or at least
not all events are equally probable. In other words, R describes a limitation in a space W
of all situations (events) a priori possible in DE.

The number of possible events is usually significantly larger than the actual number of
records in a typi%-,' database: for N = 20 attributes, each having K = 10 values, the number
of pousible events is KN = 1020, while the size of a typical large database is about M - 106
records. Because the actual. records are so sparse, it is impossible to distinguish between an
event which does not occur in DB because it is not possible, and event which does not occur
in DB but is possihle.

For each database DB, the Cartesian product W can be used to build a frequency ta-
ble that shows the distribution of events (records) that actually occur in DB. A frequency
table is a mapping from W to the set of natural numbers N, which associates each pos-
sible event (vl,... , v.) with the number of occurrences of the corresponding record in the
database. Frequency tables based on W are potentially very important, because they could
be viewed as a regularities. However, as we have just shown, for typical databases they are
not practical, because they are very large and very iparse. For most of possible events in the
Cartesian. product W there are no corresponding records in the database. The sparseness of
record distribution in W can be reduced by attribute projection (which reduces N) and by
aggregation of attribute values (which reduces K). When projections and/or aggregations
reduce the size of W to less than the number of records M, the data in the diagram become
dense enough so that empty cells in the frequency table can be interpreted as impossible
events. 49er applies both techniques in order to deal with statistically significant samples.

Two or more dimensional frequency tables are v~ewed as statistical regularities, so called
contingency tables (Bhattacharyya and Johnson 1986; Gokhalk and Kullback 1978). A
diagram of actual frequencies can be used to reason about the domain, for instance in
making predictions. Consider a two-dimensional diagram in Table 1. Suppose that we plan
to select a person with the value 3 of the attribute LAS and we want to predict the values
of SUCCESS. Corresponding probabilities can be computed for different combinations of
values. From the diagram we can infer that value 1 of SUCCESS will occur with probability
0.28 (= 144/511), value 0.67 with probability 0.34, value 0.33 with probability 0.3, while,
value 0 with probability 0.08. Similar predictions can be made for any other value of LAS
or for any weighted combination of values.

Predictions become unique when the diagram is a function from A1 to A2. For each
value of A1 they include one value of A2 and exclude all othei- values. Many functions can
be represented by equations, which are even more concise, easy to manipulate, and useful
finr making predictions and explanations. Such are the advantages of equations that even



Table 1: An example of a statistical regularity: Actual frequency grid in NPRDC's "re-
cout.dat' database for a projection of all data to a s-i"space of two attributes: SUCCESS
and LAS (how long at a recruiting station)

Attribute: SUCCESS
100% 20 62 144 207 162 296 378 124
67% 25 156 175 165 105 175 210 48
33% 11 35 152 62 32 53 48 9
0% 47 93 40 16 2 7 9 3

"1 2 3 4 5 6 7 8
Attribute: LAS

the more fuzzy diagrams can be represented by equations, accompanied bý the values of
deviation. Linear correlations capture a simple cae of this idea. Although einy diagram can
be represented by a statement in the language C, typically such statements would be very
long, enumerating each field in the diagram. Equations, such as A2 = -(A 1 - a)' + b are far
more concise.

Multivalued relation also exclude some events, but do not allow us to make unique pre-
dictions. Many of them can be represented in a concise first order logic form. For example,
the regularity in Table 2 can be represented by the statement: all raven are black.

iahle 2.: Hi nd white raveno
black 207 935

non-black 0 658
raven non-raven

Both functions and relationships can be called black-and-white regularities. According
to them, some events can never occur in W. If all events can occur, then we have a statis-
tical gray-level ri .*drity, a contingency table. The predictions are the weakest when the
probabilities in a •€ci contingency table are equal. A random distribution does not allow
to narrow down the scope of predicted values; each is equally probable. We may hesitate to
call a random distribution a regularity, but a random world (a combination of independent
variables) holds a distinct, empirically verifiable pattern. Various distributions of events in
a random world are statistically improbable. Because the usefulness of random distributions
is negligible, we will narrow down the notion of regularity to include only diagrams in which
events occur with actual frequencies significantly different from those expected apriori.

Databases can hardly offer the quality of data available to an experimental scientist.
Scientific facts are usually highly repeatable, leading to sharp, deterministic, function-type
regularities described by mathematical equations. Since we cannot expect the same quality
of regularities in databases, 49er searches primarily for weaker, statistical regula.-ities. Equa-
tions are most useful for scientific databases and to express definitional relationships, which
can be used as integrity constraints, but occasionally they can be used in other situations,

Regularities can be compared by their statistical strength based on various criteria, 49er
uses the chi-square test and the corresponding probability that a given sample is a statis-
tical fluctuation of random distribution. Actual probability distribution must be compared
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with the expected distribution based on the null hypothesis of variables independence. The
regularity can take on the form of a relative difference table (sometime they are also called
contingency tables), defined by (Ai - Ei)/Ei, where Ai is the actual number of records in
cell i, while Ei is the value based on the null hypothesis of independence applied to the
histograms of the variables used in the table.

Another important characteristic of a regularity is its range: a regularity may occur in
all data or in a subset of DB. A regularity between A1 and A2 may be very weak in the
projection that includes all data, but in the subset of data defined by a subset of values
of A3 the regularity can be much stronger. Similarly to rules, we may expect regularities,
whose range is defined by a conjunction of conditions on values of other attributes.

A regularity in a database DB can be expressed in the following form:

PATTERN in RANGE, (1)

where RANGE defines a subset in W (whole W as a special case), while PATTERN describes
the regularity that occurs for the data available in the RANGE. 49er.b finds regularities in
the form:

REG(G,Ci,...,CA) in Pl(S)&...&Pn(Sk), (2)

where {S,,...,Sk, G,Ci,.s.., C} C {A 1,....,AN}; P,(A,) is either A, > a,, Ai _< aj, or (for
nominal attributes) A, = a,, a. is a value of Ai; REG(G, Cl,... , C) is either a function
G = f(C 1 ,.. . ,Ch) or is a k + 1 dimensional contingency table for all values of C1 ,... ,Ck
and G (which we call CONTINGENCY-ALL), or is a contingency table for upper and lower
values of each attribute (2tk+1 cells, called CONTINGENCY-2). The meaning of Ce's, Si's
and G's will be explained in the next section.

Similarly to statisticai literature, we use the term contingency tables to indicate two
types ot tables: (1) frequency tables, which tzre similar to scatter plots. They allows to make
predictions of values of one attribute based on values of other attributes. (2) difference tables,
which show comparison between actual and expected frequencies of dat.a distributions. They
show unexpected events (records) in data, and details of dependency between attributes.
Our CONTINGENCY-2 produces a simple and short summary, very cl.)se to the correlation
coefficient, while CONTINGENCY-all shows the dependency in far greater details.

Regularities can be compared by their generality, determined by their RANGE, and by
the strength of their PATTERN. The refinement process produces regularities of greater
generality and/or greater strength, which are desired because they apply to a larger frac-
tion of the population and/or produce stronger, more unique predictions. The strength of
PATTERN is measured by the chi-square test and the corresponding probability, and by
several other statistical measures, such as Cramer coefficient. A threshold of acceptance can
be set for each measure. Descriptions of contingency tables, various statistical parameters,
and their efficient implementations are provided in Press et al.(1989) and in many books on
statistics.

Theory is a collection of regularities. Forty-Niner tries to cover as much data as possible
with regularities. It tries to come up with as few regularities as necessary; each as strong
and as general as possible. The simplicity results from the order of search: try to cover
all data for two variables with one regularity; if not possible then split the range into two
subranges and cover each with a regularity. Continue recursively until all data are covered
by regularities or until the dataset is too small to be split further.
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Our definition of a regularity is compatible with other approaches. In first-or.der logic,
every contingent formula (neither a tautology nor its negations) is a claim that excludes
certain situations and therefore is a candidate for a regularity. A contingent formula is true
in some possible worlds and false in, others, describes a limitation in the set of all possibilities.
Our definition fits the falsificationist view of science because each formula which claims that
some possibilities never occur is falsified if they are shown to exist. It also satisfies the
information measure approach. The less likely it is that the empirical distribution would
have been randomly generated as the null hypothesis distribution, the more information it
contains and the stronger a regularity it is.

4 Multisearch in 49er
Different elements of a regularity in the form (2) are determined by separate search compo-
nents of 49er. All ranges are produced by the Partition-Data Search. Ranges are defined
initially by an apriori decomposition of values of each attribute into subsets, later by t4"
ranges refined in feedback with regularity refinement, All combinations of the attributes
which occur in the pattern are selected by Select-Attributes Search, while the actual pat-
tern of each regularity is determined by the Find-Regularity Search. Regularities in which
patterns include more than two variables are obtained by the refinement search which tries
to generalize two-dimensional regularities. The combihation of all searches is illustrated in
Figure 2.

4.1 Operations on Attributes
Forty-Niner.b performs three basic operations on each attribute: aggregation, slicing, and
projection.

Aggregation. Aggregation combines values of an attribute into classes of abstraction. By
reducing the number of values, we increase the relative density of data, allowing for efficient
screening of large ranges of data by the fast computation of simple statistical regularities.
Typically, Forty-Niner aggregates all values of an attribute into two classes: lower and higher.
The system tries to ensure that the sets of records corresponding to both aggregates are of
equal size, making the best possible approximation. However, other aggregation methods
can also be used. For example, the data could be divided into more than two subsets, or the
dividing point could be chosen by a different method.

Slicing. We call the next operation slicing, or data partitioning. Taking a slice of a data
set using the value v, of attribute Ai means selecting all elements of the data set that have
value vi. Slicing reduces the amount and narrows the range of data. If a regularity is weak
when we consider all values of the attribute Ai, it is possible that stronger regularities exist
in one or more slices of A&, When slicing works on the results of aggregation, and vi is an
aggregate of values, all elements with a value of Ai in vi are included into the slice. Section
6.1 shows how domain knowledge about attributes is used to produce slices.

Projecting. Projecting the attribute Ai is equivalent to ignoring this attribute; all records
are includea regardless of the value of Ai. In the multidimensional space W introduced in the
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Figure 2: Overview of the search for tw(.-dimensional regulariiies. The search, which proceeds
from the top, is a combination of three searches: Partion-Data Search, Select-Attributes
Search, and Find-Regularity Search. See section 4 for details of each search. To the left of
the search" tree are illustrations of some important data structures related to the search.
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:Section "What is a Regularity?', where each attribute represents one dimension, slicing and
projecting reduce the number of dimensions, Slicing reduces the data set, while projecting
preserves all the data. Projection and aggregation are useful in reducing the sparsity of data
in W.

StI AI

Al

-- : Figure 3: The partitioning search: slicing and projecting data

In Figure 3 we show examples of slicing and projecting in a, three-dimensional space. The
data in this space follow a strong regularity: A3 = (A, + A2)/2. If the space is sliced using a
particular value of A,, then a strong linear regularity is found between A2 and A3. However',
if it is projected along A, instead, only a weak linear relationship can be detected. If the'
values of A, are first aggregated and then a slice is taken using one of the aggregates, then
a modee'ately strong linear relationship can be found between A2 and ,A3. If the variable A,,

I0



is used for projection, the regularity is virtually lost as a result.

4.2 Partition-Data Search

The Partition-Data search (upper part of Figure 2) produces subsets of the database, which
are candidates for the RANGE of regularities and will be examined for patterns. 49er.b uses
a simple step-wise partitioning mechanism, based on the values of one attribute at each step.

Aggregates of attribute values. Suppose that all the values of attribute A, are aggregated
into p disjoint clases or bins, aq ... aP. Each class al defines a slice of a dataset D, including
all records in D, for which af is the value of Ai. For the preliminary search, a practical
number of slices per attribute is 2, but it could be any number. For simplicity, throughout
this paper we will use p = 2, corresponding to two slices per attribute.

Attribute type determines aggregation. Different aggregates make sense depending on
the relationships between attribute values. Here 49er.b distinguishes two types of attributes:
nominal attributes, for which no ordering relationship between values is known, and ordinal
attributes, the values of which are ordered linearly. To avoid spurious slices, 49er.b does
not aggregate nominal attributes, using their original values if the number of values does
not exceed p. Although nominal values can be aggregated, many alternatives are possible
and most have little meaning, For ordinal attributes, the values are split into p categories,
such that the corresponding subsets of records in the corresponding data set are as close as
possible to equal. For p = 2, there is a single value a, of Ai that defines two aggregates:
{vlv _. ai) and {vlv > ai). These sets contain "lower" and "higher" values of Al.
Search control. Partitioning is controlled by the subset S = {$S, ... , Sk), S C {A, ... , AN),
of attributes to be used in slicing, by the type of attribute, and by the rninimum number
m of records in a data set under which it will not be sliced. For each attribute in S, the
data set is either projected (dotted lines), or sliced (solid lines in upper part of Figure 2)
until the number of records is smaller than m, because the statistics for small sets are not
reliable. The minimum slice size limits the depth of the partitioning search, as depicted
by the boundary on the minimum number of records in the upper right part of Figure 2.
Projecting an attribute is equivalent to ignoring its values, No records are excluded by the
projection,

Search complexity. When 49er.b considers only two slices for each attribute in S =
{S1,,..,Sk), plus the projection, the total number of possible ranges is 3 k-1. But the
minimum slice size rn limits data partition to approximately log12 M/m steps. If N = 30,
M = i01, and m = 103, then 329 leaf nodes are reduced to only 3', by the factor 323. Since
data are seldom sliced exactly into halves, the depth, at which branching stops, varies,

Summary of RANGE description. Range is described by a conjunction of conditions,
each on the values of a single attribute. The number of conjuncts is limited by the minimum
slice size. Formally:

Range-cond4,tion - Slice-condition & Range-condition I 0
Slice-condition - Ai > ai I Ai <- ai
IRangel > m

11



4.3 Select-Attributes Search

The Select-Attributes Search (Figure 2) generates all combinations of control (independent)
and goal (dependent) variables for each data subset generated by 'the Partition-Data Search.
Then, at each leaf, the Find-Regularity Search for two-dimensional regularities is called.

Whether a variable is independent or dependent relies on the user goals and user control
capabilities. Useful regularities hold between control variables, whose values can be set by
user actions, and goal variables, those that the user wants to change, but whose values
can be only controlled indirectly, throughout coLtrol variables. If the goal and control
attributes cannot be decided, all attribute pairs are compared in an exhaustive search. The
array which captures the knowledge of potentially useful pairs (Cj, Cj) of control and goal
attributes (Figure 2; to the left of the Select-Attributes Search tree), controls node generation
in Select-Attributes search.

If a regularity R has been detected for the attributes C and G in a data set D, typically
an avalanche of regularities can be detected in the subsets of D for the same variables.
Although all these regularities are worth considering because they can lead to refinements
of R, this is done later by the refinement module, while the initial Select-Attribute search
uses the following dynamic heuristic: "do not consider a pair attributes in a data subset if
a regularity for those two attributes was already found in a superset". This heuristic works
because the Partition-Data depth first search control never generates a subset of data before
it considers all supersets of that subset. In fact, it never generates the same subset of data
twice.

Search complexity. For K independent variables and L dependent variables, the number of
pairs is K x L, For the exhaustive search, when control and goal variables are not identified,
the number of attribute pairs is N(N - 1)/2, where N is the number of variables.

4.4 Find-Regularity Search

Given a range of data and two attributes, the Find-Regularity Search (two lower parts of
Figure 2) looks for patterns that fit the right-hand side of a regularity (2). The search for
each kind of regularity starts with an application test, followed by hypothesis construction
and evaluation,

Domain knowledge determines regularity type. Application tests use domain knowl-
edge about both attributes. Regularities in a particular type can make sense for some at-
tributes only. For example, equations make sense only for numeric attributes which belong to
the interval scale. When numbers io not mean more than names, an equation discovered for
such a nominal attribute would be spurious, because it would vanish when the names or the
ordering of names is changed. Attribute types belong to domain knowledge. We discussed
how nominal and ordinal types are used to determine aggregates of values. If, in addition
to ordering, the distance between each value and its immediate successor is the same, we
get an interval attribute. All attribute types can be defined both on symbolic and numeric
values, but since interval scale permits equation detection, the values must be converted to
numbers, so that numeric techniques can be used.

The second concern is the number of values of an attribute. Although contingency tables
are defined for any number of values, they become computationally costly and/or spairse if
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the number of values is large. For this reason, the values are binned (aggregated) if their
number exceeds a threshold (default of 10 in 49er.b). For the sake of equation generation,
aggreg'tion preserves the interval scale.

Application conditions for different types of regularities are summarized in Table 3. Ad-
ditionally, the search for equations is triggered when the functionality test is passed, that is
only when there is an approximate functional dependence between C' and GC.

Table 3: De endence' between type of both ottributes ad type f re gularity.
nominal ordinal interval unbined numeric

nominal contingency-all contingency.all co nInyTa_ _

ordinal contingency-all contingency-all coatingency-all
contin-ency-2 contingency-2

iuterval contingency-all contingency.all contingency-all
contingency-2 contingency-2

equation equation
unbinned nume, __. _ equation equation

Functionality test. Empirical equations are efficient summaries of data, but the more
distant the data are from a functional relationship, the less sense they make. Because the
search for equations is expensive, 49er.b applies a functionality test, and looks for equations
only when the test returns high value, for low values it only computes statistical contingency
tables (Figure 2). The functionality test is based on the general definition of a function and
the assumption of normal error. It is performed on the table of the actual frequencies of
value combinations for both attributes,

Adding new patterns. As 'pattern' is a very broadly defined term, many other regularity
types are possible, for instance, multifunctions (Piatetsky & Matheus 1991). The search for
new types of regularities can be easily added to the Find-Regularity search, by specifying
application condition, hypothesis construction mechanism, and evaluation criteria.

Hypothesis generation. All regularity types which survive the application tests are tried.
The hypothesis construction mechanism creates the best instance for each type. This is done
by direct computation (building a contingency table) or by yet another search (Equation
Finder; Its combination of two searches, generate terms and generate equations, is depicted
in the lower right corner of Figure 2; for details see Zembowicz & iytkow, 1991).

Hypothesis evaluation. When all elements of a hypothesis in the form (2) are generated,
the evaluation is possible, Positive evaluation of regularity R justifies contributions made to'
R by all three searches. To establish the statistical significance or strength, for each pattern
in the form of a contingency table 49er.b uses the x2-test and computes the probability Q
that this value of X2 (or larger) could be the result of random fluctuation. A large value of
the probability Q means that the regularity can be explained as a statistical fluctuation. All
regularities with the probability Q larger than a user-controlled threshold are rejected, The
threshold can be lowered if we want to review only the strong regularities. Evaluation of
equations is based on a similar mechanism and discussed in detail in Zembowicz and Zytkow
(1991).

13



Although the combination of searches depicted in Figure 2 exhaustively goes through the
hypothesis space, the search is applied depth-first. The total number of hypotheses depends
on search parameters and on a database. Table 17 shows that the maximum number of
CONTINGENCY-all tables is 25,965, computed in an exhaustive search in a DB of 10,000
records, 10 attributes, 10 values per attribute, and a minimum size of a slice equal to 1,000.
Thus, at the rate of 1 regularity/second, for more than 1000 records, 49er considers about 5
hypotheses per second. Typically however, the search is faster because. the domain knowledge
reduces search.

5 Types of Regularities

The Partition-Data search chooses a database subset, then the Select-Attributes search se-
lects two attributes and invokes the search for regularities. Based on the domain knowledge,
the list of applicable regularity types for those attributes is formed. The search for regulari-
ties finds all regularities from the applicable types and returns those that pass the evaluation
criteria.

Currently the system considers regularities based on contingency tables and equations.
Thanks to the open architecture of 49er, new types of regularities can be very eaily added
to the system.

In general, the sarch for each kind of regularity can be defined by specifying application
criteria, detection mechanism, and evaluation criteria. Usually, a regularity makes sewne only
for attributes of some special type. For example, equations make sense only for numeric
attributes, but, obviously, not for nominal. Application criteria provide requirements for
attributes and the number of their values that must be satisfied to trigger the search for
a given type of regularity. The hypothesis detection mechanism constructs the instance of
the given regularity type. The detection could be a simple step (like building a contingency
table) as well as another search (like Equation Finder). Due to the presence of noise in
"data and the degree of fit, each found regularity must be evaluated to establish its level of
significance. Only regularities that pass those evaluation criteria will be further considered
and reported.

5.1 CONTINGENCY-all Regularities
Let's imagine that we are interested in finding a regularity between days of leave (LEAVE)
and success-rate at work (SUCCESS). If we want to check how values of the independent
attribute LEAVE determine the values of the goal attribute SUCCESS, we can use a con-.
tingency table. Each entry in the contingency table A (see Table 4) is equal to the number
of data records that have the corresponding values of both attributes (for example, there is
201 records with LEAVE from 11 to 20 days and SUCCESS= 100% at the same time). For
a given value of the attribute LEAVE, the contingency table gives the empirical distribution
of values of the attribute SUCCESS. For instance, if a person has 4 leave days, then the
most probable values of SUCCESS are 67% and 100%

However, before any predictions based on a contingency table can be done, one mutt verify
that inde&' there is a dependence between considered attributes. If there is no correlation
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Table 4: Days of leave vs success: actual counts
SUCCESS
100% 342 201 290 315 117 127
67% 221 135 204 225 77 191
33% 95 35 67 66 33 103

0% 39 14 13 16 16 115
0-10 11-20 21-30 31-40 41-50 51-60

LEAVE (days

between attributes, then the entries in the table are determined by individual distributions
of values of each attribute. However, a scientist almost never knows true distributions of
attribute values (this especially holds for databases). But if a given database is believed to
be a representative sample of the whole population, then empirical histogram# could be good
estimation of those unknown distributions.

Let h(z) be the histogram of attribute x,

( x n n)),

where xi, .. ,, xk are values of attribute x while n, ,..., n•, are counts of records with
corresponding value of x. For the example in the Table 4,

h(LEAVE) - {(10, 697), (20,385), (30,574), (40,622), (50,243), (60,536)),
h(SUCCESS) ={(0%, 213), (33%, 399), (67%, 1053), (100%, 1392)).

If attributes z and y are independent, then the expected number of records with x w xj and
y = Yj is equal to

where N is the total number of records. This reflects the fact that the joint distribution
of independent variables is an appropriate multiplication of distributions of each variable.
The table E is usually called a table of expected counts, therefore contingency table A is
sometimes called table of actual counts. The third table, 6, contains relative differences
between actual and expected counts,

Aq,- E~j.

Tables 5 and 6 show expected counts and relative differences for LEAVE vs SUCCESS.
We use the chi-square test to determine the significance of correlation between attributes

based on the contingency table. The chi-square is defined as

The chi-square value is a global measure of the difference between expected and actual

counts. However, it depends on the size of the contingency table and the number of records,
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Table 5: Days of leave vs success: counts expected based on the independence hypothesis
SUCCESS
100% 317.4 175.3 261.4 283.2 110.6 244.1
67% 240.1 132.6 197.7 214.3 83.7 184.6
33% 91.0 50.3 74.9 81.2 31.7 70.0

0% 48.6 26.8 40.0 43.3 16.9 37.3
0-10 11-20 21-30 31-40 41-50 51-60

-. LEAVE (days) ...

Table 6: Days of leave vs success: table of differences
SUCCESS
100% 0.08 0.15 0.11 0.11 0.06 -0.48
67% -0.08 0.02 0.03 0.05 -0.08 0.03
33% 0.04 -0.30 -0.11 -0.19 0.04 0.47

0% -0.20 -0.48 -0.67 -0.63 -0.06 2.08
- 0-10 11-20 21-30 31-40 41-50 51-60

LEAVE (days)

therefore it cannot be directly used to verify the significance of the regularity. 49er estimates
the probability Q that this obtained value of the chi-square (or smaller) could be the result
of random fluctuation, Large value of the probability Q means that the regularity is statisti-
cally insignificant - such dependencies between involved attributes can be explained by, for
example, noise present in data. The system uses a user-controlled threshold: all regularities
with the probability Q larger than the threshold Q,,.', are rejected. The same evaluation
method is used for all regularities based on contingency tables.

The probability Q measures the statistical signflcance of a contingency table. It tells
only what are the chances that -the corresponding value of chi-square could be generated
by a random fluctuation. There are other measures that try to estimate the strength of the
correlation between given attributes. The strongest, or ideal, correlation is when for each
value of one attribute there is at most one corresponding value of the other attribute, and
vice versa, In other words, in each row and in each column of the contingency table for those
attributes there is at most one non-zero entry (see Table 7). Chi-square should not be used
to judge the strength because it highly depends on the number of records and the size of
the contingency table. 49er computes two other measures: Cramer's V and the contingency
coefficient C,

For a given N.., x N,,, contingency table, Cramer's V is defined as

X2
, N= vmin(N~0o - 1, N~o, - 1)'

where N is the number of records. For ideal correlation, X1 is equal to N mnin(N, o,- 1, -N 0 1-
1). Thus we see that for a perfect correlation Cramer's V = 1, On the other extreme, when
actual counts are exactly equal to expected, then X2 = 0 and V = 0. The iarget Cramer's V

16



Table 7: Example of a contingency table for ideal correlation: for each value of the attribute
x there is at most one value of the attribute y, and vice versa.

Attribute y
high . 27 0 0 0
moderate 0 0 0 44
low 0 0 76 0

Attribute x

is, the stronger correlation is. Therefore this measure can be used to compare contingency
tables.

The other measure computed by 49er is the contingency coefficient C,

Its value is 0 when there is no correlation, but its upper limit depends on the size of the
table. Therefore it can be used only to compare contingency tables of the same size

5.2 CONTINGENCY-2 Regularities
Sometimes a CONTINGENCY-all regularity is too detailed to be easily interpreted, because
the corresponding contingency table could be quite large (Me Table 4). However, we can
introduce four new concepts by grouping values of each attribute into two subsets: "lower"
and "upper". For the example discussed in the section 5.1, the four new concepts are:
SMALL-SUCCESS, BIG-SUCCESS, SHORT-LEAVE, and LONG-LEAVE. Tablea of actual
and expected counts formed for these four concepts (see Table 8) suggst the regularity:
short leave correlate, with big success, The CONTINGENCY-2 table is evaluated as a 2 by
2 contingency table.

Table . I GENCY.2 for LEAVE vs SUCCESS: actual ounts
IG-SUCCESS 833 559

SMALL-SUCCESS 823 842
_... .. _- , '"SHORT-LEAVE LON EAV

Table 9: CONTINGENCY-2 for LEAVE vs SUCCESS: expected countsS•BIG-SUOCE••S' 754.1 637.9

SMALL-SUCCESS 901.4 763.1
S" ... . SHORT.LEAVE V~oN.LEAVE'

Table IQ! COTNGEN P-2 for LEAVE vs SUCCESS: differencesBIG-SUCCESS 0.105 -_a0.1i24

-SMALL-SUCCESS -0.088 0.103
-- .SHORT- LEAVE .NG-L
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The only problem is how to define border line between concepts (is 30 days long or
short leave?), If there is no hint in the domain knowledge that could suggest definition of
concepts, the system attempts to introduce concepts itself. The initial partitioninglof LEAVE
to SHORT and LONG is based on a simple rule: number of records (people) with short
leave should be approximately equal to that with long leave. If the resulting regularity for
concepts is quite significant (statistically strong), then one could try to refine the definition
of concepts to strengthen the regularity by vv'ying borders between concepts. However,
this refinement could be quite costly and thus it is not done for all CONTINGENCY-2
regularities (see section 7,3). For the above example, 49er defined BIG-SUCCESS as 100%,
SMALL-SUCCESS as 0%, 33%, or 67%, SHORT-LEAVE as 0-30 days, and LONG-LEAVE
as 31-60 days.

5.3 Equations
49er.b incorporates Equation Finder (EF: Zembowicz & tytkow, 1991), another machine
discovery system. Equation Finder can detect a broad range of equations useful in different
domains, and can be easily expanded by addition of new variable transformations. Previous
systems, such as BACON or ABACUS, disregarded or oversimplified the problems of error
analysis and error propagation, leading to paradoxical results and impeding the true world
applications. Our system treats experimental error in a systematic and statistically sound
manner. It propagates error to the transformed variables and assigns error to parameters
in equations. It uses errors in weighted least squares fitting, in the evaluation of equations,
including their acceptance, rejection and ranking, and uses parameter error to eliminate
spurious parameters. The system detects equivalent terms (variables) and equations, and it
removes the repetitions,

Input to EF consists of N numeric data points (zx, yi, ai), i = I,. . ,N, where xi are
values of the independent variable x, yj are values of the dependent variable y, oi represents
the uncertainty of yj (scientists call it error, for statisticians it is deviation, while the term
noise is often used in AI). Output is a list of acceptable models.

Model Fitting. Model Fitter, a component of EF, uses chi-square fitting, known also as
weighted least-squares (Eadie et at. 1971, Press et at. 1989) to fit given numeric data points
(xz,yi,ori) to a finite number of models. Model is a function template y = f(x,a 1,... ,ag)
(for example, y = a, + a~z + a3X2) whose parameters' values a,, aq are determined by
the requirement that the value of X ,

N2=X •to (3)

is minimal. The value of X2 is the sum of squares of deviations of data points (xi, yi) from
the model, weighted by errors o'r, so that measurements which are more precise carry greater
weight. At the minimum of X2, its derivatives with respect to the ay all vanish,

- fx.(,ai,...,ag) Of(xi,al,...,aA,...,a,) 0, (4)
Oaj

for j = 1,..., q. In general, the set (2) of equations is non-linear and not easy to solve. For
a polynomial model, however, the set (4) can be solved by algebraic or matrix operations,
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producing efficiently a unique solution. Our Model Fitter can consider polynomials of any
degree. In addition to the original variables x and y Model Fitter can work on data expressed
in any transformed variables: z' = xz(x) and y' = y'(x, y).

Parameter Error. Standard deviations of parameters a,,..,. , aq at the values that minimize
X2 are calculated according to the formula for error propagation (Eadie et al. 1971):

2 N a. = 2 2

(parameter values a,,j , 1,..., q are solutions of equations (4), therefore they are functions
of Xi,, Y6, .

Removing vanishing parameters. If the absolute value of a fitted parameters a, is smaller
than the corresponding error a.,, then zero could be also a good value for a,. EF sets this
naraxneter to zero. The new simplified equation has a similar goodness of fit (Zembowicz &

ytkow 1991).

Fit Evaluation. For the best fit to each model, EF calculates the value of X2 according to
Equation (3), and assigns the probability Q = Q(XI, N - q) (N - q is the number of degrees
of freedom in the data left after the fit) that this X2 value has not been reached by chance.
A small value of Q means that the discrepancy between the data (x,, yi, ac) and the model
y & f(, ali,.., a,) is unlikely to be a chance fluctuation. The threshold of acceptance is
defined using the probability Q: all models for which Q is smaller than some minimum value.
Q.j., are rejected, The best models are those with the largest values of Q.

Figure 4 demonstrates the generation of new variables and equations. It depicts the
backtrace of actions needed to generate the equatiohfi e W), this equation can be
generated at depth two in the Generate New Variables search (the original variables x and
V are depth zero).

6 Use of Domain Knowledge
49er uses existing domain knowledge to formulate goals for database exploration, to opti-
mize the search for regularities, and to avoid considering spurious regularities. The system
recognizes the following kinds of knowledge:

@ attribute dependency information: which attributes are goal or dependent attributes,
which are control or independent; this information is used to determine exploration
goals;

* attribute type: used by the search for regularities to consider only those regularity
types that make sense for considered attributes (see section 6.2) and by the partitioning
search to produce slices (subsets) of the database (see Section 6.1);

In addition to the information listed above, 49er also uses symbolic names and description
of attributes, names of defined groups and concepts, etc, to ease the communication with
the user.
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Figure 4: Generation of new variables and e ~ation,: the backtrace of all actions responsible
for the generation of equation V -- C(-+-+-W )1g.

Now let us present attribute types that 49er currently recognizes.
An attribute of type nominal has simply symbolic values. For convenience, 49er assumes

that the set of possible symbolic values is finite. If each symbolic value has a unique prede-
cessor and a unique successor (with the exception of the first and the last value, respectively),
then an attribute of such type is said to be ordinal. If, in addition to ordering, there is a
measure that defines the distance between any two values and the distance between a value
and its successor is always the same, the attribute is called an interval one. All these three
types (nominal, ordinal, interval) have symbolic values. But there could be also number.
valued attributes, Numbers could be treated as values of the type ordinal, but the set of
possible values of a numeric attribute is infinite. 49er recognizes two numeric types: real or
'plain' numeric (value is any real number) and 'binned' numeric. For the latter one, num:n
bets are grouped into bins, also called intervals. Thus, possibly, the set of values of a binned
numeric attribute becomes finite. If the length of each interval (bin) is the same, then the
type binned numeric becomes compatible with the type interval.

6.1 Dependence Between Attribute Type and Slicing Method
The way an attribute is used to produce slices (subsets) of the database depends on the
type of this attribute and and the set of its values. The partitioning search uses here two
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user-controlled thresholds: the maximum number p of slices based on one attribute and the
minimum size (number of records) of a database subset.

If the number of values of a nominal attribute is not larger than the threshold p, each
produced slice will correspond to one attribute value, that is, all records in a slice will have
the same value of the attribute used to split the database. If slices cannot be produced this
way, then the actual set of data is split into two subsets such that both have approximately
the same number of records. The determination of the subsets is the same as the definition
of concepts defined by a CONTINGENCY-2 regularity. The last method works only for
ordered attribute values, that is, for ordinal, interval, ratio, numeric, and binned numeric.
It means that if an attribute of type nominal has too many values, it cannot be used to slice
the data to subsets.

6.2 Dependence Between Attribute Type and Regularity Type

It is clear that each regularity discussed above requires attributes to be of some particular
type - for other types the regularity does not have any sense (that is, it is impossible
to interpret such regularity). For example, equation for nominal attributes would be a
very strange regularity. Therefore this section discusses the dependence between the type
of attribute and the type of regularity. The graph presented in Table 3 summarizes the
dependence between the attribute type and the regularity type.

CONTINGENCY-all regularities can be considered for all symbolic types: nominal, or-
dinal, interval, and ratio. In addition, if an attribute of numeric type was binned (grouped
into intervals), then CONTINGENCY-all regularity will be analyzed also for this attribute.

Initial definition of concepts used in CONTINGENCY-2 is based on the assumption that
there is an order among the values of considered attribute. Therefore nominal attributes can-
not be treated in the same way as ordinal. Thus CONTINGENCY-2 regularity is considered
only for ordinal, interval, ratio, and numeric types.

Equations can be found only for interval, ratio and numeric attributes, either plain (type
real) or binned into groups of equal length.

We now see that binning values of a numeric attribute is very welcomed because 49er
can then uncover a regularity between symbolic attribute and numeric one. In addition, the
search for equations is expensive (compared to the analysis of contingency tables), Binning
data reduces time needed to find an equation, because, usually, the number of values is
significantly reduced, too. If an equation is discovered, 49er can refine it by taking the
original, unbinned data (see Section 7.4).

7 Regularity and Concept Refinement

The regularities found by the initial search can be further improved by another search. The
goal of this search is to refine, already discovered regularities and concepts, to make them
stronger. 49cr.b uses several techniques to expand the range of regularities and/or to increase
the strength of their patterns, Stronger and more :-neral regularities lead to more unique
predictions and better decisions. They also lead to concepts that better fit the domain. All
improvements can be considered in the same framework of searches as the initial discovery
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of regularities. All the resultant regularities have the same form (2), no matter by what
combination of refinement techniques they have been reached.

7.1 Refinement of Range

Initial selection of range is done to some extent a priori, that is after binning data based
on the computed histograms for the sliced attributes, but before any regularities have been
found. But after a regularity is found, the range can be improved by additional search. By
the discussed properties of control of the Partition-Datrý Search, for each regularity D -+
REG(C, G), no regularity for C and G has been found in the supersets of D, or the search
would stop there. But only a limited number of supersets has been considered and small
increases of the range are still possible.

The improvements are done by the following combination of three searches:

Until pattern strength is no longer improved:
For each attribute in the description of D:

Vary slightly the range D,
For each now range:

Use the same attributes C and G
Find pattern, compute the strength

Select new D for which pattern is strongest

The range is varied by changing one of the conditions at a time. For an ordered attribute
Si, if a condition has been Si > aj and if the immediate neighbors of aj are aj-1 and aj+1,
then the new conditions are Si > aj- 1 and Ai > aj+i; each new subset should exceed the
minimum slice size. For a nominal attribute, the values are aggregated in all combinations,
which does not cause a very large number of combinations, because only those attributes
with a very small number of values have been used in Partition-Data Search. The search is
controlled by hill climbing.

7.2 Adding New Dimensions to Patterns

A 2D regularity can be a projection of a finer regularity in more dimensions. It can be also
a projection of a regularity in one slice of attribute Ai and random distribution in another
slice. We will now discuss h.ow 49er deals with both problems. In the former case, the
improved regularity has the same range but a stronger pattern, while in the l&.tter, the range
is smaller but the pattern becomes much stronger.

For a yet unsliced attribute A:
Generate slices
For each slice:

Select the same attributes G, Ci,...,Ck
Find 2 dimensional regularity

If there is a stronger regularity in each
slice (compared to original regularity)

then
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Select the attributes G, Cl,.._ ,Ck, A
Find k+1 dimensioral regularity

else
combine slices for vhich regularities

are stronger than the original
regularity

Select the attributes G, CI,...,Ck. A
Find k+1 dimensional regularity

This search mechanism is very similar to BACON and FAHRENHEIT. Both multidimen-
sional equations and multidimensional contingency tables can be generated this way. Often,
their pattern is much stronger than the pattern in a less-dimensional projections.

This refinement method works for all types of regularities, and can produce regularities in
all types. For instance, if a regularity isfirst uncovered as a 2 dimensional CONTINGENCY-
all table, it can be then refined to a 3 dimensional equation.

7.3 Refinement of CONTINGENCY-2 Regularities and Con-
cepts

CONTINGENk, Y-2 regularities are contingency tables based on attribute values aggregated

into two disjoint and complementary subsets of "lower" and "upper" values for each attribute,
±lPy are an important tool for summarizing regularities, very similar to linear correlations,

S., ,• they are easy to interpret, to use for making predictions or decisions, and take little
.....e even if generalized to many dimensions. The initial aggregation is done a priori, taking

into account the histogram of each attribute, but not regularity between attributes. This
way an initial approximation of a stronger regularity can be captured. Then, by the changes
of the concept definitions for the "lower" and "upper" vaiues, CONTINGENCY-2 can be
strengthened. New concepts of "lower' and "upper" values obtained as a result of refinement
can be more significant.

The refinement of CONTINGENCY-2 uses the same change-range operator as Refine-
Range, and the same hill-climbing search control, which stops when strength can be improved
no more. For ordinal attributes the resulting algorithm is fast (O(k 2 x n), where n is the
number of values of the attribute, k is the number of attributes).

Tables 11 and 13 show an example of CONTINGENCY-2 refinement for a regularity
found in a database of 3252 records. The success of recruitment depends strongly on the
length of recruiter's leave in a given year (or it can be the other way around: the leave can
depend on success). The dependence turns out to be particularly strong when leaves are
divided into longer than 50 days and those not longer than 50 days. The refined regularity
gives special meaning to a short leave (50 days or less), that is one which allows the recruiter
to be successful and a 'ong leave (more than 50 days) which correlates with significantly
lower performance. The priori split at 30 days also categorizes leaves into short and long,
but is not as significant,

23



Table 11: Original CONTINGENCY-2 regularity.
X2 = 33.11, Q = 8.7. 10"
SUCCESS
> 67% 0.105 -0.124
_5 67% -0.088 0.103

. 30 > 30
LEXAVE (days)

Table 12: CONTINGENCY-all showing initial definition of "lower" and "upper" values.
SUCCESS
100% 0.08 0.15 0.11 0.11 0.06 -0.48
67% -0.08 0.02 0.03 0.05 -0.08 0.03
33% 0.04 -0.30 -0.11 -0.19 0.04 0.47
0% -0.20 -0.48 -0.67 -0.63 -0.06 2.08

0-10 11-20 21-30 31-40 41-50 51-60
- ..... LE"AV (days)

Table 13: CONTINGENCY-2 regularity after refinement.
X2 = 173.13, Q w 1.5. 10-ag
SUCCESS
> 33% 0.055 -0.258
5 33% -0.219 1.032

<50 > 50
LEAV days

Table 14: CONTINGENCY-all table showing refined "lower" and "upper" values.
SUCCESS
100% 0.08 0.15 0.11 0.11 0.06 -0.48
67% -0.08 0.02 0.03 0.08 -0.08 0.03
33% 0.04 -0.30 -0.11 -0,19 0.04 0.47
0% -0.20 -0.48 -0.67 -0.63 -0.06 2.08

0-10 11-20 21-30 31-40 41-50 51-60
LEAV ( days)

7.4 Refinement of Equations
Refining an equation E means finding another equation that describes the same range of
records, for the same attributes, better than the original one, An equation can be improved
in two ways. First, if the values of either attribute were grouped into bins, then Equation
Finder can be run on originpl, unbinned data. Since data aggregation increases error, the
new equation will fit data more precisely. Second, Equation Finder can be run to the larger
depth of search: the maximum degree of a polynomial and/or the maximum transformation
level can be increased (Zembowicz & Zytkow 1991). Transformations can be also expanded
in breadth, by considering additional primitive transformations.
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7.5 Automated Use of Refinement

49er.b is typically used according to the following strategy:

Strategy 1 Run the basic search, returning all regularities which exceed a permissive thresh.
old of acceptance. Select a subset of regulkritie. and refinement methods and apply refine-
ment.

Another, fully automated strategy could be also used:

Strategy 2 Run the basic search returning only those regularities which exceed a high thresh.
old of acceptance. Have the system select and apply all refinements automatically.

Both strategies can be aided by a good guess of a threshold, If the threshold is low, a
very large number of regularities can be generated. If the threshold is high, few regularities
will be found. Strategy 2 requires a good guess of the threshold and good selection criteria
for the regularities to be refined. If we do not have confidence in our formal criteria, it is
better to use "manual" selection.

A hard problem for automated refinement is to set the tradeoff between the increase of
range and of regularities and the tradeoff between improved strength and increased storage,
Refinement is comzputationally expensive. Even if it may take a second per regularity in
simple cases, this figure must be multiplied by the number of regularities. The branching
and depth of most refinement methods depend on the number of attributes, which we attempt
to incorporate in a given regularity.

8 Tests on Real and Artificial Data
49er's search is simple and modular, so that. system analysis can confirm that all generated
regularities fit the form given in (2). The computations leading to the scope and strength
of individual regularities can be also justified by the analysis of search mechanisms and
statistical methods of evaluation,

8.1 Application to real databases

New and challenging problems arise when we want to evaluate 49er's findings on real data.
When applied to a megabyte size database, 49er typically discovers hundreds of regularities
which are statistically very significant (a 200-600kB output file is typical), Most of them
take the form of contingency tables, but functional regularities are also detected, Many
regularities are subsequently refined to reach the strength of many orders of magnitude
higher. Whether they can be further refined and whether some regularities have been missed
is an open issue, partly because we do not have a clear definition of optimality, arid partly
because it is difficult to have an alternative source of answers to discovery problems for most,
of real-world databases. We tested optimality by a hide-and-seek method described later
in this section, applying 49er.b on artificially generated databases with known regularities
hidden in noise.
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Table 15: One of results obtained by Chipman et al," correlations of ability/attitude with
career orientation. In italics the correlations for which 49er found counterparts. Career
orientation attributes: PSCI: Physicist/Chemist & Engineer; BIO: Biologist & Doctor; BEX:
Business Executive; LAW: Lawyer; J/W: Journalist/Writer. Ability/Attitude attributes:
VSAT and QSAT: verbal and quantitative tests for high school students; HSmth: high school
math background; HStchr: student's view of high school teachers; P/T: prefer work with
people than things; Money: interest in income and money; Ideas: importance of working with
ideas; MathA/C: math anxiety/confidence; MathAv: math average; CompA/C: computer
anxiety/confidence. ___1_____

VSAT -0.08 -0.07 -0.09 0.04 0.18
QSAT 0.11 0.03 0.07 -0.03 -0.12
HSmath 0.26 0.21 0.14 0.02 .0.1
HStchr 0.21 0,16 0.09 -0.03 -0.16
P/T 0,31 0.14 0.12 -0.05 -0.12
Money 0.17 0.17 0.44 0.13 -0,16
Ideas -0.17 -0.12 -0.19 -0.03 0.39
MathA/C 0.45 0,81 0.14 -0.07 -0.82
MathAv 0.80 0.18 0.06 -0.09 -015
CompA/C 1 0.24 0.28 0.07 0.03 .0.08

Table 16: 49er's results for the same data, Each entry i. the confidence level (probability)
Q of CONTINGENCY-2 regulari y. Only regularities with. <1" ar0 shown.

PSCI BIO BEX LAW J/W
VSAT 10"T
QSAT
HSmath 10",° 10"o 10"9
HStchr 10w 10"1
P/T 10"20 10"6
Money 10"23 10"° 10.6
Ideas I0"s I0" 3

MathA/C 10"3 10-12 10-6 10"16

MathAv 10"16 10"14

CompA/C 1010 10"0

8.2 Comparison with human findings

For most datebases we do not know the "correct" answers which can be compared with the
findings of 49er. A database which has been studied extensively by human researchers gives
a good opportunity for comparisons. It is difficult to get human generated results, howevei,
especially for large databases. Fortunately, we were able to test 49er on a database that was
extensively analyzed by scientists, We set the goal to reproduce their results by 49er. In the
next stage we will try whether 49er can do better on the same data.

Chipman, Krantz, and Silver (1990) analyzed mathematics anxiety among freshmen stu-
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dents in the Bernard Women's College. The original data are answers to a questionnaire
given to incoming students. 1366 records of about 125 attributes each (350kB of data) cor-
respond to 1366 students answering 125 questions. In the first stage, Chipman et at focused
on combining individual questions, which are similar enough so that the answers can be
totaled into compound attributes. Then they analyzed dependencies between compound
attributes. We have run 49er following the saame strategy. Fitst, we run 49er on the same
groups of original questions as considered by Chipman et at. reaching similar conclusions.
49er's results confirm that the questionnaire is well design to study math anxiety and allow
us to select the same top five questions to define the compound attribute of math anxiety.
Our results confirm that other forms of anxiety are weakly defined, In the process, 49er
discovered many regularities, which can be the starting point for further refinement process,
but our task was to parallel the reported results. Typically, it took 5 to 12 minutes to obtain
regularities for one group of questions, about 10 seconds per one useful regularity.

In the second phase, 49er was executed on the compound attributes created by Chip-
man et a!, The results were again very similar. A sample comparison is presented in ta-
bles 15 and 16. Chipman et al. use linear correlations in their analysis, while 49er uses
CONTINGENCY-2 and CONTINGENCY-all contingency tables; nevertheless the results
correspond very closely (large absolute value of the correlation coefficient corresponds to
small value of the probability Q, and vice versa). In Table 15 the results in italics are those
for which 49er found counterparts. 49er haven't discovered some weak correlations because
the threshold of acceptance was set at Q a 10-a,

We could draw several conclusions from our test. First, the applications of 49er which
duplicated the results in Chipman's report were simple and schematic: "For a set of inde-
pendent attributcs, and a set of dependent attributes find regularities in the whole dataset,"
Slicing was applied only few times, on a single attribute. Those applications did not utilize
the strength of 49er, which lies in fast search over large number of data subsets, and in detec-
tion of different types of regularitiem, depending on the data. 49er needed about 10 minutes
to conduct each search, spending several hours on all tests altogether, In fact we applied 49er
each time on a deeper search, obtaining many regularities, which can be starting point to
the regularity refinement process and human analysis, The total output from 49er contains
more than one and half megabyte of results. We were surprised that the our mechanism for
knowledge representation applied so well to the research reported by Chipman et at. A long
sequence of paragraphs in their report could be directly translated into search problems for
49er and all ten of their tables have counterparts in 49er's findings.

8.3 What can be Discovered in Purely Random Data?

Statistical fluctuations, if sufficiently improbable, are reported as regularities. In fact, for
each contingency table, 49er.b computes the probability Q that the corresponding (or larger)
value of chi-square could be the result of a random fluctuation. For each probability value
q, if a sufficiently high number of hypotheses is considered during the search, a pattern with
Q < q can be present in randomly generated data. If 49er.b considers 10,000 hypotheses for
purely random data., we can expect that approximately one of them has a probability Q of
no more tian 0.0001. Such a regularity considered in isolation may seem significant, but it
is only a random fluctuation, This is the nature of probability: we must accept that some
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statistical fluctuations can be mistaken for regularities.
This observation suggests the following test: run the system on random data, compute the

statistics of regularity probabilities, and compare with theoretical predictions. About 90%
of regularities should have Q Ž 0.1, about 9% should have Q in the range 0.01 _5 Q < 0.1,
and so forth. We have created 25 databases containing data generated randomly from
uniform distribution. Table 17 shows test results for several databaes. The second task is
to advice the user on the acceptance threshold at which s/he can be reasonably sure that
the regularities are real.

Table 17: Statistical fluctuations interpreted as regularities. All databases generated ran-
domly from uniform distributions of values. 49erb was set to report all regularities irrespec-
tive of their significance. Results are for CONTINGENCY-2 contingency tables; distribution
of Q for CONTINGENCY-all regularities is very similar. (CPU time is reported for a DEC.
station 5000 running Allegro Common Lisp.)

Test number 9 13 18 24 25
Number of records 10000 1000 10000 1000 1000

Number of attributes 5 10 10 10 10
Number of values 10 10 10 4 2

Minimum slice size 200 100 1000 100 100
Number of regularities 270 25797 25968 25944 25776
Run time (CPU hours) 0:03 1:33 5:53 0:19 0:12

Ranpe of Q Actual Kof regularities Expected
12: Q > 0.1 92.96 90.02 90.36 89.81 89.52 90.000

0.1 _ Q > 0.01 5.56 8.97 8.65 9.20 9.46 9.000
0.01 > Q > 0.001 1.48 0.91 0.89 0.88 0.95 0.900

0.001 Q Q > 0.0001 0.00 0,09 0.08 0.10 0.06 0.090
0.0001 Q Q > 0.00001 0.00 0.00 0.01 0.01 0.00 0.009

Let us generate a random database with n attributes A&, ,.., A,. For each attributes
A,,i = 1,... ,n the values of Ai in all N records are randomly generated numbers. In other
words, such a database contains pure noise. We have created 25 such databases, varying the
number of records, number of attributes, and the number of values per attribute, To get the
full statistics, we have set 49er.b to report all regularities irrespective of their significance.
Then, for each database, we have computed the histogram of all probabilities in probability
Q, to verify whether Q has the distribution based on its probabilistic interpretation. Table
17 shows sample results for databases of different size, Results contained in the table show
CONTINGENCY-2 regularities. Distribution of Q for CONTINGENCY-all regularities is
very similar,

Table 17 provides us also with CPU time measurements and the number of hypotheses
that are generated in sample databases. CPU time is reported for a DECstation 5000
running Allegro Common Lisp. 49er analyses some 8 regularities (CONTINGENCY-2 and
CONTINGENCY-all) per second, on average, in a database of 1000 records, and about 2
per second in database of 10,000 records. The maximum number of hypotheses based on
contingency. tables that can be considered for 10 attributes compared to each other, and for
three layers of slicing is 2 x 25965.
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Should we mistrust regularities discovered by 49er, treating them as possible fluctuations?
Not if we decide to accept only the regularities sufficiently stronger than possible fluctuations,
If we know the amount of hypotheses to be considered by a particular search, we can estimate
the strength of the strongest random fluctuations. Then, if we set the threshold on the
acceptable probability by several orders of magnitude below that number, we can be sure
that the regularities are real. An appropriate threshold is known as Bonferroni adjustment.
For instance, if we set the probability thresholds at Q = 10-7 for the search comparable to
tests 13, 18, 24, and 25 in Table Table 17, the probability that a random regularity will pass
the threshold in one search is 0.01. It means that among hundreds of regularities detected
in a single search, there is 0.01 chance that one of them is a result of random noise.

Few additional data in Table 17 are worth mentioning. 49er was forced to report all con-
tingency tables within depth of slicing set at about three, reporting some 25,000 regularities
in individual runs, and spending from 0.027 to 0.8 second per regularity, depending on the
number of records, and values per attribute,

Table 18: Test: discovery of hidden regularities.
Attributes Regularities

Type Significance
A0, A2  contingency-all X3 = 145.9 1 Q- 3.8 10-m

•Ao ' contingency-all I X3 22'7.7 Q f 0
Al, A2  contingency-2 X3 = 181.7 Q = 2.1 10-41

contingency-all =2 635.2 Q f 0
A3, A4  contingency-2 X 236.6 Q 0

cont-ngency-all x2 791.5 Q f 0

Table 19: CONTINGENCY-all regularity between A3 and A4 for the whole range of data
S2 =i 791.5, Q ; 0

Attribute A4

6 10 13 12 10 8 1 18
5 10 15 6 11 65 80 66
4 1 11 82 78 15 11 5
3 15 98 16 13 11 12 8
2 45 16 8 12 16 9 11
1 43 11 9 7 10 12 6
0 8 13 13 10 12 12 6

1 2 3 4 5 6 7
Attribute A3

8.4 Hide-and-seek Testing

Different regularities can be hidden in data in various combinations with noise, for the
purpose of testing. As an example of gradual discovery, let, us consider a 5-attribute database
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with the following regularities. Attribute Ao had values 0 and I generated randomly from
uniform distribution. For Ao = 0, the values of all other attributes were randomly generated.
For A0 = 1, the following relations were used:

A2 a a + bA1, A4 = c + dlos A3, (6)

The values of A, and A3 (ranging from I to 7) were generated randomly from uniform
distribution; a, b, c, d are numerical constants; Ganuian error was added to A2 and A4 .

Table 18 summarizes regularities that hold for all data, found by 49er.b in the initial
phase of search. Note that although strong regularities were discovered for all values of
Ao, no equatic , has been found. Table 19 chows the CONTINGENCY-all regularity for
attributes A3 &ad A4. Notice the effect of noise: all cells have non-zero entries because of
noise, but the regularity is still very significant (X2 w 791,5, Q s 0). The refinement search,
which seeks to add new dimensions to the pattern, decomposed this regularity into pure noise
for Ao - 0 (X3 a 30.7, Q = 0.72) and much stronger regularity for Ao - 1 (X2 w 1455.0,
Q f 0); sea table 20. Other attempts at refinement failed. Similar results have been reached
for the other equation. Refinement of spurious regularities between Ao, A2, and A4 also
failed.

Table 20: CONTINGENCY-all regularity between A3 and A 4 for slices of Ao
Ao = 0, X3 w30.7, Q = 0.72 A,0 i I, X 2- 1455.0, Q o 0

Attribute A4  Attribute A4

T To 13 12 10 8 11 9 6 0 0 0 0 0 0 9
5 10 15 6 11 8 13 11 5 0 0 0 0 60 67 55
4 1 11 11 11 13 11 5 4 0 0 71 67 2 0 0
3 15 16 13 13 11 12 8 3 0 82 3 0 0 0 0
2 6 15 8 12 16 9 11 2 39 1 0 0 0 0 0
1 13 11 9 7 10 12 6 1 30 0 0 0 0 0 0
0 8 13 13 10 12 12 6 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Attribute A3  Attribute A3

9 Application of 49er to Navy Training Database

Persons enlisted in• the Navy are usually promised training in a skill. A person can get such
a training by attending an "A" school. S/he may attend the "A" school immediately after
boot-camp or may first serve on a ship and then go to school.

Some "A" schools have very high attrition rates - over 30%. Attrition is costly to the
Navy because it looses the investment in the individual and the opportunity of investing in
another individual, Attrition has a human cost - the individual is branded as a failure and
is probably mo'e likely to attrite from the Navy or cause discipline problems.

Two data files have been combined to provide data for the analysis of attrition: the
Survival Tracking File and the Training Tracking File. The first contains basic data-about
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an individual: paygrade, duty, and various personal information, The second cont: 1, 'ata
about every training incident that the individual has had, including start date, end date,
attrition, type of training, etc. Data starts in 1979.

9.1 Strategy of search

We used 49er to search for regularities in the Navy Training data file that may indicate the
reasons for the high attritionrate in the Naval training program. The OUTCOME attribute
has been selected as the single dependent attribute and was compared to all other attributes.
Regularities were sought for all data am well as for slices.

Because of the large number of attributes (35) the search which considers all combinations
of data slicm would be very costly.

The original Navy file was broken down initially into 3 data subsets:

e background.dat

* event.dat

9 scoru.dat

In each of these subsets the dependent attribute OUTCOME was compared to all other
attributes In the data set looking for regularities that might lead to explanations of the
known outcomes.

The attributes in event.dat include:

Outcome vs Lenh of Service (Months)
Lenth in Pipeline (Days)
Days Awaiting Instruction
Interrupted Instruction Days
Under Instruction Days
Number of Academic Setbacks
Number of Non Academic Setbacks
Number Of Acceleration*
Number of Interruptions

The number of values for sorne attributes (Length of Service, Length in Pipeline, Un-
der Instruction Days, Days Awaiting Transfer, and Days Awaiting Instruction) was too
large for useful interpretation. These values were aggregated into groups of 10 days in the
CONTINGENCY-2 and CONTINGENCY-all tables.

The attributes in scores.dat include different test results:

Outcome vs AFQT SCORES
AR (arithmetic reasoning)
EI (electronics information)
Od (general science)
MC (mechanical comprehension)
MK (mathematical knowledge)
NO (numerical operations)
WK (word knowledge)
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The attributes in baukuddt Include..

Outcome vs sex indicator
race indicator
age
cohort
paygr..de
ed..cert
te.yrs
HIODIP

waiver
lossudate

Initially, 49er hu been used to search for CONTINGENCY-2 and CONTINGENCY-all
regularities and equations in these three smubts of data. After the results were analyzed,
several new quem...ons led to further applications of 49ar. The results are summarized in this
report.

9.2 Summary of resiults; STEP I
Goal: Run 49s" on each of the three data sets to determine possible causes for high attrition
rate.
Parameters: The OUTCOME attribute was set as the dependent attribute against all
other attributes in the dataset.

Results for event.dat
The results show many InterstinS regularities.

1. Passing is strongly dependent on the Number of Days Under Instruction. The more
days of instruction a student received the higher was the rate of Passing. That Is
obvious, but the CONTINGENCY-all tables provide interesting details.

2. Passing is strongly dependent on the number of Academic Setbacks. Those with fewer
Academic Setbacks passed at greater rates, A weaker regulazrity showed that one or
more of Accelerations also positively affected poasing rates.

3. Non Academic Setbacks affected the Outcome In different way depending on Days
Awaiting Transfer, Number of Interruptions, and Length of Interruptions. When Days
Awaiting Transfer was less than 10 or the Number of Interruptions was zero, more
than zero of Non Academic Setbacks improved the chances of passing, Perhaps those
who stayed longer in the, training have had a higher chance to experience Non Aca-
"demic Setbacks than many of those who dropped, However, when Days Awaiting
Transfer was more than 10 or the Number of Interruptions was more than zero, the
increasing number of Non Academic Setbacks decreased the chances of Passing, so the
previous explanation does not work for those cues, Perhaps when different obstacles
accumulate, the chances of Passing strongly decrease,
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4. Academic Attrition was affected by Academic Setbacks, Length of Service, and Under
Instruction Days or Length in the Pipeline.

e For more than zero Academic Setbacks, Academic Attrition is greater than ex-
pected.

9 Academic Attrities become greater than expected when Days Under Instruction
or Length in the Pipeline Is less than 90 days.

a A very interesting fact appeared concerning length of service. The actual fre-
quency tables show that 2/3 of all students receive training right after boot camp
or within the first 10 months of service. The results show that the proportion of
Academic Attrites in this group was greater than for students with more than 10
months of service. Students with more than 10 months of service, however, show
a greater than expected Non-Academic Attrition rate.

Results for scores.dat
The analysis performed on the Scoreasdat data file for Outcome as dependent attribute

did not show any strong regularities between the test scores and Passing or Attrition. This
suggests that passing rates are not affected by students' test scores.

Results for background.dat
Several interesting regularities were found in comparing Background Data with Outcome:

1. Passing rates depend on Sex. Male students passed at greater rates than females.

2. Outcome was also effected by Race, Whites experienced greater than expected passing
rates than Non-Whites.

3. No strong regularities was found between ED.Yrs and Outcome. The majority of
students did have 12 years of education.

9.3 Summary of results; STEP II

Goal: Since Academic Setbacks and Under Instruction Days were critical in determining
Outcome, analyze what factors affect Academic Setbacks and Under Instruction Days.
Parameters I: A new data set, including test scores, ed-cert, ed-yrs, HSGDIP was run
against the dependent attribute Academic Setbacks.
Results: No strong regularities were found that would support a definitive contributing
factor for Academic Setbacks in this data set,

Parameters II: Academic Setbacks and Days Under Instruction were set as the dependent
attributes against the Event.dat data.
Results: The regularities found in this search show several interesting tendencies.

1. Academic Setbacks are effected by the number and Days of Interruptions, As Inter.
ruptions become positive and the number of Interrupted days becomes greater than
10, the number of Academic Setbacks is greater than expected.
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2. Academic Setbacks were greater than expected when the Days Under Instruction or
Length in the Pipeline was greater than 90. One explanation for this can be that
students who attrite earlier have less chance of experiencing Academic Setbacks

3. When Days Awaiting Transfer became more than 10, Academic Setbacks there were
"greater than expected.

9.4 Summary of results; STEP III

Goal: Create a new data set to determine what background factors may contribute to
Academic Setbacks or Days Under Instruction.
Parameters: A new Data set was created that combined attributes from Background.dat
and Event.dat.
Results: Several very interesting regularities were discovered.

1, Race had major effect on Outcome, Academic Setbacks, and Days Under Instruction.
In comparison to Rce notuz "C", Race = "C" had:

e Greater than expected Passing rates
* Less than expected Academic Setbacks

e Greater than expected Days of Instruction - 90 days or more

2. Sex had showed similar results. In comparison with females, males had:

e Greater than expected Passing rates
i Less than expected Academic Setbacks

* Greater than expected: Days Under Instruction 2! 90

a Greater than expected Non-Academic Setbacks

3. SOC (student origin code) shows the following regularities:

* Students whose Origin code = "B" - (basic training/boot camp) showed a greater
than expected rate of Days Under Instruction LESS than 90 days.

i Students Whose Origin Code NOT = "B" had a greater than expected rate of
Days Under Instruction GREATER than 90 days.

4. COHORT year shows that the students entering the program in 1983 and earlier, in'
comparison to the students who entered the program after 1983, had:

a Greater than expected Academic Attrites
s Greater than expected Academic Setbacks

* Greater than expected: Days Under Instruction LESS than 90
* Less than expected Non-Academic Setbacks
9 Less than expected Interruptions
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9.5 Examples of results

In this section we illustrate some of the results discussed earlier in this section on contingency
tables from which they were inferred. We also show examples of regularity refinement. These
are only a few selected examples from a very large number of regularities detected in the
Navy Training Database.

event.dat

Passing strongly dependents on the Number of Academic Setbacks. Students who had 0
Academic Setbacks passed at greater rates, while other students became attrites at greater
rates. This conclusion was inferred from the following CONTINGENCY-ALL regularity for
OUTCOME and ACSB (Academic setbacks). PASS means 'passing the training', NON.AC
means 'non-academic attrites', ACADEM means 'academic attrites'. In the bottom row,
0, 1, 2, 3, 5 indicate the number of academic setbacks. In the following difference table
positive numbers in the table indicate events which occur more frequently that expected
based on the null hypothesis of independence between OUTCOME and Academic Setbacks.
For instance, in the first column, positive numbers indicate that trainees with zero Academic
Setbacks pass or become non-academic attrites at the greater than expected rate, while they
are academic attrites at a less than expected rate, Trainees with one or more Academic
Setbacks are academic attrites at a greater than expected rate, as indicated in the ACADEM
row of the table. The value of -1 means no data in a given cell. As explained in Section
5, 49er considers several measures of regularity strength. Their values are listed under the
corresponding tables below,

Attributes: ACADEMIC SETBACKS VS OUTCOME
Range: All 6032 records

OUTCOME
PASS 0.0148 -0.0589 0.0500 0.0487 0.5294
NON-AC 0.1800 -0.4343 -0.6518 -1 -1
ACADEM -0.1024 0.3064 0.1050 0.2326 -1

0 1 2 3 5
ACSB

X2 = 99.35
Probability of random fluctuation Q = 5.79.10-1s

Cramer's V = 0.09
Contingency coefficient C = 0.13

background.dat

OUTCOME versus SEX and RACE
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OUTCOME
PASS -0.0653 0.0327
NON-AC -0.1710 0.0855
ACADEM 0.2287 -0.1144

FEMALE MALE
SEX

The positive and negative differences in this table show that males, compared to females,
are academic attrites at a smaller rate, while pass or become non-academic attrites at a
greater rate. The probability of random fluctuation Q = 4.91e-13.

The next table shows the relationship between RACE and OUTCOME. The positive and
negative differences in this table show different patterns of dependence between OUTCOME
and RACE. The frequency table (not reproduced in the report) indicates that only for the
race 'Z' there was not enough data (just two recca-4s) to make a conclusion. For this table,
the probability of random fluctuation Q - 9.58e-11.

OUTCOME
PASS 0.0250 0.0196 -0.1699 -0.0168 -0.0267 -0.2353
NON-AC 0.0114 -1 0.0119 -1 -0.4018 4.4836
ACADEM -0.0680 0.3073 0.4315 0.4007 0.2123 -1

C M N R X z
RACE

A weaker but interesting CONTINGENCY-ALL regularity holds for Academic Setbacks
(ACSB) vs. Non Academic Setbacks (NASB).

ACSB
5 0.1292 -1 -1 -1 -1
3 -0.0644 0.4362 1.3937 -1 -1
2 -0.0635 0.3564 1.3272 1.9921 -1
1 -0.0489 0.3409 0.6669 0.6669 -1
0 0.0193 -0.1292 -0.2934 -0.3125 0.3750

0 1 2 3 4
NASB

X' = 56.346687
Probability of random fluctuation Q = 2.1326926 .10-6

Cramer's V = 0.048325185
Contingency coefficient C = 0.09620209

This regularity reveals a simple pattern: those who have got setbacks of one type (aca-
demic or non-academic), show a tendency to have more than expected setbacks of the other
type. This pattern is very well captured by CONTINGENCY-2 regularity reproduced below,
which is stronger than CONTINGENCY-ALL (probability of 10-11 vs. 2 x 10-1). In the
difference table below, the positive numbers 0.019 and 0.398 show the positive correlation
between both types of setback.
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ACSB Differences Actual counts Expected counts
> 0-0.051 0.398 1382.00 263.00 1456.83 188.17

0 0.019 -0.149 3960.00 427.00 3885.17 501.83
0 >0 0 >0 0 >0

NASB
2 = 46.2

Probability of random fluctuation Q = 1.07.10-11
Cramer's V = 0.088

Contingency coefficient C = 0.087

We reproduced all three tables important for reasoning about contingency tables and
defined in section 5: difference table, actual frequency table, expected frequency table. 49er
returns all three, because all three are needed to make sound conclusions. To save space, we
normally report only the difference table of the actual frequency table.

An example of regularity refinement

Consider the refinement process applied to the CONTINGENCY-2 for the attributes Aca-
demic Setbacks vs Under Instruction Days. The CONTINGENCY-2 refinement caused a
shift of the split point in the CONTINGENCY-2 table from 90 Days Under Instruction to
100 Days Under Instruction. The Chi-square and Cramer coefficient values increased very
significantly, providing evidence that ceividing data at 100 days under instruction is more
significant than 90 days. Details of the refinement follow:

Before refinement After refinement
UIDAYS UIDAYS
> 9 -0.189 0.504 > 10 -0.538 1.434
_ <9 0.131 -0.350 :5 10 0.079 -0.211

:0 0 >0 •<0 >0
ACSB ACSB

Before After
X2= 398.88 683.18

Probabil. of random fluct. Q = 0.0 0.0
Cramer's V = 0.26 0.34

Contingency coefficient C = 0.25 0.32

Both patterns are very strong, as indicated by (almost) zero probability of random fluc-
tuation. In this table, UIDAYS are related to the number of Academic Setbacks. UIDAYS
has been also refined to 100 days for several other attributes. For some other attributes,
such as Awaiting Transfer Days and INTERRUPTIONS, however, a "natural" split point
obtained in the r~finement process is at 70 days. This may mean that 70 Days and 100 Days
Under Instruction are significant for different reasons in relition to different attributes.
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10 Application of 49er to Navy Recruitment Database

NPRDC did a survey of Navy recruiters to find out how they like their job. Recruiters
have to make a quota every month. Since the number of recruiters is dropping, mostly for
demographic reasons, NPRDC wants to know how the recruiter's job can be made better.

10.1 Strategy of search

Two natural outcome variables for the task are SATISFY and SUCCESS. They measure
whether the recruiter is satisfied with his job and how successful he is at the job. We used
SATISFY and SUCCESS as dependent variables, and all other variables as independent, to
find those with highest influence on SATISFY and SUCCESS.

10.2 Summary of results for SATISFY

A number of strong regularities have been detected, which have been expressed as equations.

Train vs. Satisfy: TRAIN is the training scale, 49er came up with a number of
equations which describe these data. The best fit has been Y - (log(A + B x X)), where Y
is the dependent variable (SATISFY), wherem X is independent (TRAIN). A W 2.71, with
error of A equal 0.35; B = 0.75 with error of B equal 0.11. Tracing the positive values from
the lower left corner to the upper right corner in the following difference table produced -by
49er, one can get a rough estimate of this equation. In this table, the values of TRAIN
(training scale) from 10 to 68 have been aggregated in 10s (1 - 7).

Attribute: SATISFY (#1)
eeeeeeee-----------.--- -. ---------- ----- .. ... Oft. --.- ....

7 1 -1 I-.64991-.49391-.05661.927081 4,956111.9051
-------- +---------4-.e +.---- m -----+---------+eeeeeeee..------.. .

6 I -1 I-.73571-.45651.0225611.219912.343111.62261
--------------------eeeee---..eeeee~eeeee--------------eee---------+

5 1-.30911-.59161-.214210.17981530071,543681 -1 1
-- ..... aaa...... ee.....eee .--------- ---.---... W --... + 4.--------..

4 I-.83341-.49781I-.0154i.233831.159621-.38581 '-1 1
-------- 4.-------4.-----------.--.---..--..- -...... ..... +aa .... ....

3 I-.492310.04611,173741 0.0321-.23811-.75691.106121
------.------- +aaaaaaa+a..... aa.....+a ...----------- + ..--------..

2 11.29791.774791,266461-.24771-.71891-,74331 -1 1
------------.---.. -...----------- -.... ....-.... --.... .a.----------.

1 12.398311.28491.075951-0,3461-.70431 -1 I -1 1
-------- ................ ------- --.---------------------

1. 1 21 31 41 51 61 '71
Attribute: TRAIN (#19)

Chi-square a 784.9994
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Number of degrees of freedom a 49
Probability of random fluctuation Q a 0.0

CramerIs V - 0. 18569934
Contingency coefficient C - 0.44096622

TEAMWORK vs. SATISFY: The beat equation for these attributes has the same
form Y = (log(A + B x X)) as one for TRAIN and SATISFY, but different parameter values
(AB) = (3.3012410.44533682) and different errors for A and B (0.29477584 0.07523044).

Many other regularities for SATISFY have been detected in the form of similar equations
for SUPPORT, SUPERS (supervisor quality), Job Strome, RESPECT, Personal
Support, and several other attributes,

Hours vs Satisfy: Recruiters had a greater than expected level of job satisfaction when
the value for hours was lens than or equal to 3. Job dissatisfaction was greater than expected
when the value for hours became greater than 3.

Freeman vs Satisfy: Job satisfaction was greater than expected for recruiters who had
not been nominated for a freeman transfer, Recruiters who had been nominated showed
greater than expected rates of job dissatisfaction.

Individual 6 Month Goals vs Satisfaction: Recruiter who made their goal at least
5-6 times within the past 6 months had a greater than expected rate of job satisfaction.
Recruiters who did not achieve their goal at least 5 times had a greater than expected rate
of job dissatisfaction.

Station goals vs Satisfaction: Station goals were consistent with individual goals.
Recruiters from stations which made their goal at least 5 times in the last 6 months had
a greater than expected level of job satisfaction, while those from stations which did not
achieve their goals had a greater than expected level of job dis-satisfaction.

Length as Recruiter vs Satisfy: An interesting CONTINGENCY-ALL regularity.
Recruiters who were new to the job showed a greater than expected rate of job satisfaction,
Recruiters who had been on the job for 3 years or more also showed a significantly greater
than expected rate of job tiatisfaction. Recruiter on the job between 9 and 36 months showed
a greater than expected rate of job dis-satisfaction.

This is interesting because success rate of new recruiters is very low, A recruiter usually
becomes successful after 9 months on the job. This regularity proves that success is not the
necessary factor in job satisfaction,

X2 = 495.04
Probability of random fluctuation Q = 1.34 ,10-1

Cramer's V = 0.14
Contingency coefficient C = 0.36

10.3 Summary of results for SUCCESS

Leave (C19) vs Success: If leave was limited to not more than 10 days, there was a greater
than expected rate of 100% success in meeting the goals, If the number of days of leave was
greater than 20 there was a much greater than expected rate of low, 0 - 33%, success,
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The CONTINGENCY-2 refinement shows that the dependence of SUCCESS on the
LENGTH of LEAVE is very significant. When we compare recruiters who take more than
20 days leave with those who take 20 days or less, the rate of 67% or more success is very
significantly greater for those who take less leave.

CONT-2 CONT-2 CONT-ALL
Refinement

chi' - 33.11 173.13 357.26
Probability of random fluctuation Q = 8.71,10-9 1.5. 10-- 0,0

Cramer's V =u 0.10 0.23 0.17
Contingency coefficient C - 0.10 0.22 0.31

Advance vs Succeu: A very interesting CONTINGENCY-ALL regularity. A geater
than expected number of recruiters with a succes rate of 67% or more felt that they had
advanced slower than average. Recruiters with a poorer performance felt that their careers
had advantced somewhat faster than average.

X-2 134.32
Probability of random fluctuation Q - 5.99. 10-11

Cramer's V - 0.10
Contingency coefficient C = 0.20

F1reeman vs Success: A much greater than expected number of recruiters who reached
there goals 67% or les of the time and were nominated for a freeman transfer within the
past yew. There was a much greater than expected number of recruiters who did not know
if they were nominated or not.

CONT-2 CONT.2 CONT-ALL
Refinement

X2 - 26,39 80.51 414.9
Probability of random fluctuation Q = 2.79,10"- 2.9,10-i1 0.0

Crimner's V = 0,09 016 0.20
Contingency coefficient C = 0.09 0.16 0.33

Time At Present Station vs Success: The longer a recruiter is at a station the more
success s/he will experience. In addition to strong CONTINGENCY-2 and CONTINGENCY-
ALL regularities, a linear dependence of SUCCESS on Time At Present Station has been
also discovered,

CONTINGENCY-2 CONTINGENCY-ALL
X 2 = 174.65 10009.92

Probability of random fluctuation Q = 7.12. 10"4 0.0
Cramer's V - 0.24 0.28

Contingency coefficient C = 0.23 0.23

Linear regularity: Slope: 0.088 Y-Intercept: 0.222
Deviations: dev - 0.449 r^2 a 0.14
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r2 is the square of the correlation coefficient. dev measures the difference between pre-
dicted and actual values of the dependent variable,

Time as a Recruiter vs Success: The longer an individual serves as a recruiter the
more successful s/he will be. Regularities in all categories have been detected for these
attributes:

CONT-2 CONT-2 CONT-ALL
Refinement

X2 = 137.31 375.48 1652.28
Probability of random fluctuation Q = 1.033. 10"31 0.0 0.0

Cramer's V - 0.21 0.34 0.36
Contingency coefficient C = 0.21 0.32 0.58

Linear regularity: Slope: 0.103 Y-Intercept.: 0,062
Deviations: dev a 0.436 r42 w 0.189

Community vs Success: An interesting CONTINGENCY-ALL regularity. Recruiters
from the surface communities had a Ion than expected rate of achieving 100% of their goals.
Recruiters from air and other communities had a significantly higher than expected rate of
achieving their goals 100% of the time. Recruiters from the medical community had a much
greater than expected rate of achieving their goals only 33% of the time.

X 152.24
Probability of random fluctuation Q - 1.27, 10-2

Cramer's V - 0,11
Contingency coefficient C = 0.21

Time in the Navy vs Success: Length of service influences positively the success rate
of recruiters (CONTINGENCY-ALL regularity).

X - 201.74
Probability of raudom fluctuation Q = 4,81.10-1

Cramer's V = 0.12
Contingency coefficient C = 0.24

Paygrade vs Success: A similar but weaker CONTINGENCY-ALL regularity has been
found between PAYGRADE and SUCCESS, This is probably related more to the time in
service than paygrade,

X = 101.89
Probability of random fluctuation Q = 1.53.10-11

Cramer's V = 0.09
Contingency coefficient, C = 0.17
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11 Conclusions

Forty-Niner has been able to discover statistically significant regularities in various real-
world databases, but whether they may have practical applications depends on the users,
who must interpret and apply the results. However, more databases must be tried before we
can conclude usefulness of our exploration paradigm stated in Section 1. The answer is only
partially the test of 49ar. It also depends on the nature of databases and can be different
for databases in different domains.

12 Acknowledgments and Disclaimer

The opinions expressed in this paper are those of the author, are not official, and do not
necessarily reflect the views of the Navy Department. The work described in this paper
was supported by the Office of Naval research under the grant No. N00014-91-J-1362. We
would like to thank Susan Chipman, David Krantz, Rat Silver, Steve Sorensen, and Gregory
Piatetsky-Shapiro for their advice, and/or their databases and details of their data analysis.
Special thanks to Drs. Susan Chipman and Steven Sorensen for their inspiration, many
helpful discussions and suggestions.

13 Publications sponsored by this grant

Integration of Knowledge and Method in Re&l-World Discovery, SIGART, 1991.

The KDD Land of Plenty, in Piatetsky-Shapiro, G. ed. Proceedings of the AAAI-91 Work-
shop on Knowledge Discovery in Databases, Anaheim, July 1991, p.iii-vi.

Automated Empirical Discovery in a Numerical Space (with Zhu, J), in the Proceedings of
the Third Annual Chinese Machine Learning Workshop, July 15-19, 1991, Harbin Institute
of Technology, p,1-1i.

Human Discovery of Laws and Concepts; An Experiment (with Zytkow, A), in Proceedings
of the 13th Cognitive Science Conference, Lawrence Earlbaum Associates, 1991, p. 6 17-62 2.

Automated Discovery of Empirical Equations from Data (with Zembowicz, R), in Ras Z.

and Zemankova M. (eds.) Methodologies for Intelligent Systems, Springer-Verlag, 1991,
p.4 2 9-4 40,

Control of Automated Empirical Discovery by Diagrammatic Representation of Theory (with
Zhu, J.), in Narayanan H. ed. Working Notes of the AAAI Spring Symposium on Reasoning
with Diagrammatic Representations, Palo Alto, CA, March 1992. 176-179.

The First Phase of Real-World Discovery: Determining Repeatability and Error of Exper-
iments (with Zhu, J. and Zembowicz, R.), in Machine Learning: Proceedings of the Ninth
International Conference, July 1992, Aberdeen, United Kingdom. Morgan Kaufmann Publ.

42



Operational Definition Refinement: a Discovery Process (with Zhu, J., and Zembowicz R,).
Accepted for the Proceedings of the Tenth National Conference on Artificial Intelligence,
The AAAI Press, 1992.

Discovery of Equations: Experimental Evaluation of Convergence (with Zembowicz R.).
Accepted for the Proceedings of the Tenth National Conference on Artificial Intelligence,
The AAAI Press, 1992.

A Graph Representation of an Empirical Theory: Guiding a Machine Discovery Process
(with Zenmbowicz, R. and Zhu, J.), in Kishore S. ed. Proceedings of AAAI-92 Workshop on
Communicating Scientific and Technical Knowledge, July 1992. To be published.

Discovery of Regularities in Databases (with Zembowicz, R.), in Zytkow J. ed Proceedings
of the ML-92 Workshop on Machine Discovery. July 1992, Aberdeen, U.K. 18-27.

14 References
Bhattacharyya, G.K. & Johnson, R.A. (1986) Statistical Concepts and Methods, New York:NY:
Wiley.

Cali, Y., Cercoiie, Y., and Jiawei, H. (1989). Attribute-oriented Induction in Relational
Databases, Proceedings of The International Workshop on Knowledge Discovery in Datablses.

Chimenti, D. et a1. (1990). The LDL System Prototype, IEEE Trwaachion. on Knowledge
and Data Engineering, Vol,2, No.1
Chipman, S.F., Krants, DH., Silver, R. (1990). Mathematics Anxiety and Science Careers
Among Able College Women, Technical Report

Eadie, W.T., Drijard, D., James, F.E., Roos, M., Sadoulet, B. (1971) Statistical Methods in
Experimental Physics, North-Holland Publishing Company.

Glymour, C., Scheines, R., Spirtes, P., Kelly, K. (1987), Discovering Causal Structure,
Academic Press, San Diego, California.

Glymour, C., Scheines, R., Spirtes, P., Kelly, K. (1991). Causality, Statistics and Sear-,h,
Technical Report, Department of Philosophy, Carnegie Mellon University,

Gokhale, D.V. & Kullback, S, (1978) The Information in Contingency Tables, Marcel Dekker,.
Inc. New York, NY.

Langley, P., Simon, H. A., Bradshaw, G. L. & Zytkow, J. M. (1987). Scientific discovery:
Computational explorations of the creative processes. Cambridge, MA: MIT Press.

Lisp-Stat: Book Review (1991) Statistical Science, Vol.6, No.4, 339-362.

Naqvi, S., and Tsur S., (1989). A Logical Language for Data and Knowledge Bases, Computer
Science Press, New York.

43



Platetsky-Shapiro, 0. ed. (1991) Proc. of AAAI-91 Workshop Knowledge Discovery in
Databases

Piatetaky-Shapiro, Frawley ed. (1991). Knowledge Discovery in Databases, Menlo Park,
Calif.: AAAI Press.

Press, W. H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1989) Numerical Recipes in
Ppacal, Cambridge Cambridge Univ. Press.

Piatetsky-Shaplro, G. and C. Matheus, (1991) Knowledge Discovery Workbench, in: G.
Piatetsky-Shapiro ed. Proc. of AAAI-91 Workshop Knowledge Discovery in Databasea, 11-
24

Shrager, J. and Langley, P. ads (1990), Computational Models of Scientific Discovery and

Theory Formation, Morgan Kaufmann, San Mateo, CA.

SPSS Inc., (1990) SPSS Reference Guide, Chicago, IL.

Tierney, L. (1990). Lisp-Stat: An Object-Oriented Environment for Statistical Computing
and Dynamic Graphics, Wiley & Sons.

Zembowics, Rs, ±ytkow, J.M. (1991). Automated Discovery of Empirical Equations from
Data, Proceeding. of the ISMIS-.9 Synmposium, SpringerVerlag

iytkow, J.M. (1987). Combining many searches in the FAHRENHEIT discovery system,
Prpc. 4th International Workshop on Machine Learning, Morgan Kaufmann, Irvine, CA.
281-287.

±ytkow, J., and Baker, J., (1991). Interactive Mining of Regularities in Databases, in:
Knowledge Discovery in Databaes, eds. G. Piatetsky-Shapiro and W. Frawley. Menlo Park,
Calif.: AAAI Press,

44


